Whole Body Flush Protocol


Whole Body



This protocol targets metabolic waste in tissues. It re-establishes oxygen levels to problematic areas which tend to be degenerate, sore and disease prone. It boosts whole body oxygen enough to facilitate healing and recovery, but usually not enough to provoke an immune rallyOccurs 48 hours after LiveO2 training resulting in a fever of up to 102 degrees and lasting for 6–24 hours. The effect is modeled as an up-regulation in white blood cell activity enabled by higher oxygen levels in body fluids, including lymph. response.

It is equivalent to spending many hours in a hyperbaric chamber. Use this protocol when you feel sluggish, tired, or just want to feel better. This is the primary protocol used in public demonstrations. It produces consistent effects with the strong majority of users.

The Whole Body Flush Protocol


Goal This protocol flushes metabolic waste out of tissues. It facilitates healing by super-saturating all body tissues, plasma and lymph with very high levels of oxygen. Most users experience maximum lifetime oxygenation.
When Used Standard first time protocol with LiveO2 Adaptive Contrast® for individuals capable of exercise.
Difficulty Low/Moderate
Detox Intensity Low
Time 15 Minutes
Frequency Once daily typical; twice daily for health restoration
Typical Response Improved sense of well being. Reduced joint soreness. Calmer, improved sleep. Lasts 2-5 days. Moderate neurological improvement.
Relative Performance This protocol generally yields about 200-300% increase in the effects of the LiveO2 First Time protocol.
LiveO2 Adaptive Contrast System
LiveO2 Adaptive Contrast® System Add to Cart

The Whole Body Flush Protocol

The Protocol


  1. Fill the oxygen reservoir
  2. Put on the mask and connect
  3. Set the system to +O2
  4. Exercise for 6-8 minutes at sustainable but aerobic pace (solidly aerobic)
    • Note exertion challenges — discomfort that occurs at about 1 minute intervals
    • Mentally note the first challenge intensity
    • Reduce effort moderately during challenges
    • Continue on oxygen until challenges become unnoticeable and exertion is easy
    • Usually 6-8 minutes
  5. After exertion challenges end — Begin Sprint Sequence
    • Switch to -O2
    • Sprint for 15 seconds at maximum output
    • Switch to high oxygen and continue sprint 15 more seconds on +O2
    • Recover on +O2 until detox clears
  6. Repeat 3-6 times
  7. Stop exertion at 15 minutes
  8. Continue breathing oxygen until pulse drops 100 BPM.

Optional Nutrients

  • Magnesium Orotate/Aspartate 500 mg
  • Thiamine 100 mg
  • Vitamin C 500 mg
  • 500 mg Arginine Alpha-ketoglutarate

** Supplemental nutrients are not usually necessary to achieve the documented protocol effect.

The Whole Body Flush Protocol


This protocol is the first step beyond the LiveO2 First Time Protocol. It protocol uses 15 second, low-oxygen sprints (-O2) to increase heart rate 10-25% over the hyperoxic maximum pulse.The max­i­mum achiev­able pulse rate while exert­ing with oxygen.

With a rich oxygen mixture, it is quite easy for most people to meet oxygen demand. This ease means that users are unable to get their heart rate above about 65% of their age-related maximum while exerting solely on rich oxygen. This limit prevents the body from achieving their maximum venous capillary pulse forceThe amount of pres­sure present at the venous end of the cap­il­lary. This is dif­fer­ent from the Pulse Pressure because it reflects all loss of pres­sure that occurs between the heart and the swollen, choked end of the cap­il­lary. The Venous Capillary Pulse Force must be enough to deliver oxy­genated plasma to the swollen endothe­lial cells to reverse inflammation. because the pulse rate is limited by too much oxygen.

This protocol enables the user to release inflammation in two stages.

  1. High Oxygen Startup
    • Reaches all well vascularized tissue where the venous capillary pulse force on rich oxygen is sufficient to penetrate swollen capillaries
  2. Hypoxic Boost
    • Increases heart rate and pulse force to squirt blood into tissues with enough resistance to resist pulse pressure at the hyperoxic maximum pulse rate. A brief, 15 second sprint increases heart rate and venous capillary pulse force to achieve tissue perfusion

The physiological objectives of the sequence are:

  1. High oxygen startup — oxygenates the core organs enough to trigger core system detox.
    • When the plasma PO2 reaches the anti-inflammatory threshold, vascular inflammation releases
    • When the vascular inflammation releases, tissue waste enters the blood-stream and travels to the liver
    • Presence of the waste interferes with oxygen transport
    • The liver diverts energy to filter waste
    • The user's perceived effort (exertion challenge) increases while the liver is clearing tissue-released waste
    • During the first 6-8 minutes most beginner users experience a series of 3-6 releases, and corresponding challenges
    • After this series the spontaneous releases cease, as the perfusion ceiling is reached at the hyperoxic maximum pulse.
  2. Hypoxic Sprints — increases the pulse force to squirt blood more deeply so it penetrates tissue more deeply than is possible with pure oxygen. This additional penetration:
    • Creates a sense of well being
    • Improves tendency for mental clarity
    • Often resolves persistent joint and muscle soreness
    • Increases oxygenation of non-vascularized tissue, lens of the eye to improve focus
    • Increases skin elasticity

The Whole Body Flush Protocol


This method is the preferred beginner's protocol. The whole-body effect is enough to create a clear and compelling improvement in sense of well being, and a noticeable improvement in most symptoms relating to systemic or regional hypoxia.

Generally the High Oxygen Phase improves symptoms relating to body-wide low oxygen, while the hypoxic sprint process tends to penetrate more acute areas with a longer history of reduced oxygen.

The 99er Pattern

The telltale for this pattern is an abnormally high 99% PO2 at start. After a few minutes of challenge the users will desaturate to an unusually low PO2 80% or lower provoked by brief hypoxic challenge. Users will dwell at the reduced PO2 for several minutes after returning to oxygen. The re-saturation pattern often occurs 9 minutes into the session. For comparison, a normal user will re-saturate to 99% within time is 5 seconds of switching to oxygen regardless of how long they remained on low oxygen.


The unnaturally high PO2 usually occurs when blood cannot reach tissues due to endothelial capillary inflammation. The endothelial inflammation reduces below the passable diameter of a red blood cell (RBC). When this occurs, only plasma can flow through the capillaries, limiting energy production to anaerobic fueled by glucose absent oxygen.

The reduced capillary cross section causes RBCs to go around narrowed capillaries. RBCs that don't pass through capillaries do not release oxygen much like a vehicle that cannot release a payload — it just remains full. This shows up as an unnaturally high starting PO2 and a tendency NOT to desaturate during hypoxic exertion challenge.

For comparison a starting saturation level of about 97%, with rapid desaturation to 87%, is normal (sea level).

This pattern contradicts the typical medical conclusion that a high hemoglobin saturation indicates good tissue oxygenation. The medical interpretation presumes, usually incorrectly, that oxygen can always move from the RBC to tissue. By the time this saturation pattern, 99-100%, occurs when the person’s body has a large percentage of under-oxygenated tissue.

The severity of systemic hypoxia is indicated by how long it takes them to resaturate after the inflammation is reversed. On the pulse oximeter, how many minutes does it take them to saturate to 99% after they reperfuse dip? The longer the time, the greater the accumulated oxygen tissue debt.

The degree of systemic hypoxia is indicated by how long it takes the person to resaturate afterwards (the amount of time the person spends on oxygen with a low oxygen level).

The problem is that the oxygen bound to hemoglobin cannot dissociate because it never passes through the capillaries where it can release oxygen. In this case, unnaturally high hemoglobin saturation means poor tissue oxygenation.

Resolution Pattern

The telltale for resolution of this pattern is a dramatic drop in PO2 late in the session while on oxygen. Here is a model for what happens:

  1. Capillary pulse pressure reaches the penetration threshold as arterial blood pressure and hypoxia-induced vasodilation deliver more pressure to capillary bed. This takes effort and some time. It does not happen instantly, and takes 5-10 minutes of effort.
  2. Endothelial cells switch back to normal metabolism and pump out sodium and quickly shrink back to normal size
  3. Capillary opens to red blood cell passage and tissue reoxygenation begins
  4. PO2 drops as tissues absorb large amount of oxygen until reperfusion is complete, usually in 2-4 minutes.

Pathological Vector

This is the typical chronic-fatigue pattern. It usually includes persistent muscle touch sensitivity from regional tissue acidosis. Over time this condition can progress to multiple local and systemic disease states:

  • Hypoglycemia as under-oxygenated tissues use excessive glucose. If the liver fails to keep up with demand, then blood sugar falls to hypoglycemic levels and causes systemic fatigue.
  • Gall bladder conditions including discomfort and gallstones. When the cori cycle depletes lactic acid reacts with bile in the gall bladder to precipitate solids which often form gallstones and cause discomfort.
  • This author suggests that tissues that retain excess lactic acid for a long time become hypersensitive as with fibromyalgia.

See Fatigue Protocol Site for a more information.


Normally this pattern only occurs once during early use. Reperfusion is durable until conditions that caused endothelial inflammation recur.

LiveO2 Adaptive Contrast appears to be a requirement to provoke resaturation. It seems the reason for this is that reduced-oxygen air creates vasodilation and increases arterial pulse pressure, which maximizes pulse pressure at the capillary entrance. This reperfusion effect has not been observed with LiveO2 Standard.

What to Expect

If you experienced this pattern, you will likely:

  • Feel stronger and have increased endurance
  • Reduced cravings for sweets and simple carbohydrates
  • Reduced tendency for muscle soreness
  • Greater strength in major muscles
  • Reduced tendency for loose stools
  • Improved fat digestion from improved bile availability
  • Have an increased respiration rate at rest

The Whole Body Flush Protocol


No questions found.

Ask a Question

Attach YouTube/Vimeo clip putting the URL in brackets: [https://youtu.be/Zkdf3kaso]